Найдите углы ромба у которых диагонали 2√3 и 2

0 интересует 0 не интересует
50 просмотров

Найдите углы ромба у которых диагонали 2√3 и 2


спросил от в категории Геометрия
1 Ответ
0 интересует 0 не интересует
ответил от Архангел (133k баллов)
 
Лучший ответ

Ромб АВСД, АС=2*корень3, ВД=2, диагонали ромба пересекаются под углом 90 и в точке пересечения О делятся пополам, ВО=1/2ВД=2/2=1, АО=АС/2=2*корень3/2=корень3, треугольник АВО прямоугольный, ВО/АО=tg углаВАО=1/корень3=корень3/3 - что соответствует углу 30, уголАВО=90-30=60, уголА=уголС=уголВАО* 2=30*2=60, уголВ=уголАВО*2=60*2=120=уголД, диагонали в ромбе=биссектрисам углов
оставил комментарий от Архангел (133k баллов)
0 0

пож-та

...